Induction of Phase 2 Antioxidant Enzymes by Broccoli Sulforaphane: Perspectives in Maintaining the Antioxidant Activity of Vitamins A, C, and E
نویسندگان
چکیده
Consumption of fruits and vegetables is recognized as an important part of a healthy diet. Increased consumption of cruciferous vegetables in particular has been associated with a decreased risk of several degenerative and chronic diseases, including cardiovascular disease and certain cancers. Members of the cruciferous vegetable family, which includes broccoli, Brussels sprouts, cauliflower, and cabbage, accumulate significant concentrations of glucosinolates, which are metabolized in vivo to biologically active isothiocyanates (ITCs). The ITC sulforaphane, which is derived from glucoraphanin, has garnered particular interest as an indirect antioxidant due to its extraordinary ability to induce expression of several enzymes via the KEAP1/Nrf2/ARE pathway. Nrf2/ARE gene products are typically characterized as Phase II detoxification enzymes and/or antioxidant (AO) enzymes. Over the last decade, human clinical studies have begun to provide in vivo evidence of both Phase II and AO enzyme induction by SF. Many AO enzymes are redox cycling enzymes that maintain redox homeostasis and activity of free radical scavengers such as vitamins A, C, and E. In this review, we present the existing evidence for induction of PII and AO enzymes by SF, the interactions of SF-induced AO enzymes and proposed maintenance of the essential vitamins A, C, and E, and, finally, the current view of genotypic effects on ITC metabolism and AO enzyme induction and function.
منابع مشابه
Antioxidant Enzymes and Oxidative Stress in the Erythrocytes of Iron Deficiency Anemic Patients Supplemented with Vitamins
Background: Iron deficiency anemia is one of the major causes of morbidity and mortality worldwide. Evidences from epidemiological and clinical studies suggest a possible correlation between antioxidant levels and the anemic disease risk. The present work is to investigate antioxidant levels and lipid peroxidation in anemic patients. Methods: A number of 30 patients (15 males and 15 females) we...
متن کاملOral sulforaphane increases Phase II antioxidant enzymes in the human upper airway.
BACKGROUND Cellular oxidative stress is an important factor in asthma and is thought to be the principle mechanism by which oxidant pollutants such as ozone and particulates mediate their pro-inflammatory effects. Endogenous Phase II enzymes abrogate oxidative stress through the scavenging of reactive oxygen species and metabolism of reactive chemicals. OBJECTIVE We conducted a placebo-contro...
متن کاملAqueous extracts of selenium-fertilized broccoli increase selenoprotein activity and inhibit DNA single-strand breaks, but decrease the activity of quinone reductase in Hepa 1c1c7 cells.
Depending on growth conditions, broccoli may be enriched in the isothiocyanate sulforaphane and/or the mineral selenium (Se); both compounds may play an important role in the reduction of intracellular oxidative stress and chronic disease prevention. Sulforaphane up-regulates transcription of Phase II detoxification proteins (e.g. quinone reductase [QR]), whereas Se is needed for the production...
متن کاملSulforaphane-induced transcription of thioredoxin reductase in lens: possible significance against cataract formation
PURPOSE Sulforaphane is a phytochemically derived organic isothiocyanate 1-isothiocyanato-4-methylsulfinyl-butane present naturally in crucifers, including broccoli and cauliflower. Biochemically, it has been reported to induce the transcription of several antioxidant enzymes. Since such enzymes have been implicated in preventing cataract formation triggered by the intraocular generation of oxy...
متن کاملAntioxidant Effects of Vitamins C and E on the Low-Density Lipoprotein Oxidation Mediated by Myeloperoxidase
Background: Oxidative modification of low-density lipoprotein (LDL) appears to be an early step in the pathogenesis of atherosclerosis. Meanwhile, myeloperoxidase (MPO)-catalyzed reaction is one of the potent pathway for LDL oxidation in vivo. The aim of this study was to evaluate in vitro antioxidant effects of vitamins C and E on LDL oxidation mediated by MPO. Methods: MPO was isolated from f...
متن کامل